Technical Article
Powered by:

Controllable Fabrication of Fe3O4/ZnO Core–Shell Nanocomposites and Their Electromagnetic Wave Absorption Performance in the 2–18 GHz Frequency Range

In this study, Fe3O4/ZnO core–shell nanocomposites were synthesized through a chemical method of coating the magnetic core (Fe3O4) with ZnO by co-precipitation of Fe3O4 with zinc acetate in a basic medium of ammonium hydroxide. The phase structure, morphology and electromagnetic parameters of the Fe3O4/ZnO core–shell nanocomposites were investigated. The results indicated that the concentration of the solvent was responsible for controlling the morphology of the composites, which further influenced their impedance matching and microwave absorption properties. Moreover, Fe3O4/ZnO nanocomposites exhibited an enhanced absorption capacity in comparison with the naked Fe3O4 nanospheres. Specifically, the minimum reflection loss value reached −50.79 dB at 4.38 GHz when the thickness was 4.5 mm. It is expected that the Fe3O4/ZnO core–shell structured nanocomposites could be a promising candidate as high-performance microwave absorbers.

» Author: Xiaodong Sun

» Reference: doi: 10.3390/ma11050780

» Publication Date: 11/05/0018

» More Information

« Go to Technological Watch

AIMPLAS - Instituto Tecnológico del Plástico | C/ Gustave Eiffel, 4 (València Parc Tecnològic) | 46980 - PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40

This project has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° [609203].

The sole responsibility for the content of this website lies with the authors. It does not necessarily reflect the opinion of the EC. The EC is not responsible for any use that may be made of the information contained therein.