TECHNOLOGICAL WATCH SERVICE
Technical Article
Powered by:

Effect of high temperature exposure on epoxy-coated glass textile reinforced mortar (GTRM) composites

An experimental investigation on the mechanical performance of epoxy-coated Alkali-Resistant (AR) glass textile reinforced mortar subjected to elevated temperature is presented. Two epoxy coatings are considered, which differ by the hardening agent alone. After 56?days dry curing, specimens are heated up to four different temperatures. After cooling down to ambient temperature, specimens are assessed in uni-axial tensile test according to Annex A of AC434. First cracking strength and elongation, ultimate tensile strength and elongation, cracked and uncracked moduli, transition point location and energy dissipation capability are evaluated. It is found that, in the explored temperature range, degradation is surprisingly mild and strongly dependent on the resin which is taken as coating agent. Indeed, temperature exposure may lead to strength enhancement. This positive outcome takes place at the expense of ductility and it is traced back, through Differential Scanning Calorimetry (DSC), to a post-curing process. Nonetheless, energy dissipation still decreases with temperature and, remarkably, with the same power-law behaviour for both resins. Such behaviour is compatible with a cumulative Weibull distribution, that is adopted in thermal damage models for resins, and it indicates that the underlying damage mechanism indeed operates on the resin at the fabric-to-matrix interface.

» Author: Massimo Messori, Andrea Nobili, Cesare Signorini, Antonella Sola

» Reference: 10.1016/j.conbuildmat.2019.04.026

» Publication Date: 10/07/2019

» More Information

« Go to Technological Watch



AIMPLAS - Instituto Tecnológico del Plástico | C/ Gustave Eiffel, 4 (Valčncia Parc Tecnolňgic) | 46980 - PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
ecogelcronos@aimplas.es

This project has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° [609203].

The sole responsibility for the content of this website lies with the authors. It does not necessarily reflect the opinion of the EC. The EC is not responsible for any use that may be made of the information contained therein.