TECHNOLOGICAL WATCH SERVICE
Technical Article
Powered by:

Hexagonal and Square Patterned Silver Nanowires/PEDOT:PSS Composite Grids by Screen Printing for Uniformly Transparent Heaters

Transparent conductive films with hexagonal and square patterns were fabricated on poly(ethylene terephthalate) (PET) substrates by screen printing technology utilizing a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver nanowire (Ag NWs) composite ink. The printing parameters—mesh number, printing layer, mass ratio of PEDOT:PSS to Ag NWs and pattern shape—have a significant influence on the photoelectric properties of the composite films. The screen mesh with a mesh number of 200 possesses a suitable mesh size of 74 µm for printing clear and integrated grids with high transparency. With an increase in the printing layer and a decrease in the mass ratio of PEDOT:PSS to Ag NWs, the transmittance and resistance of the printed grids both decreased. When the printing layer is 1, the transmittance and resistance are 85.6% and 2.23 kΩ for the hexagonal grid and 77.3% and 8.78 kΩ for the square grid, indicating that the more compact arrangement of square grids reduces the transmittance, and the greater number of connections of the square grid increases the resistance. Therefore, it is believed that improved photoelectric properties of transparent electrodes could be obtained by designing a printing pattern with optimized printing parameters. Additionally, the Ag NWs/PEDOT:PSS composite films with hexagonal and square patterns exhibit high transparency and good uniformity, suggesting promising applications in large-area and uniform heaters.

» Author: Xin He

» Reference: doi: 10.3390/polym11030468

» Publication Date: 12/03/2019

» More Information

« Go to Technological Watch



AIMPLAS - Instituto Tecnológico del Plástico | C/ Gustave Eiffel, 4 (Valčncia Parc Tecnolňgic) | 46980 - PATERNA (Valencia) - SPAIN
(+34) 96 136 60 40
ecogelcronos@aimplas.es

This project has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° [609203].

The sole responsibility for the content of this website lies with the authors. It does not necessarily reflect the opinion of the EC. The EC is not responsible for any use that may be made of the information contained therein.